ranges: $[Co^{III}] = (4.03-36.3) \times 10^{-4} \text{ M}, [I^-] = (1.0 - 20.0)$ $\times 10^{-2}$ M, and [H⁺] = 0.1–1.8 M at 25 °C and ionic strength 2.0 M.

Kinetics. Kinetic measurements were made under identical conditions used for stoichiometry measurements. The appearance of iodine (as I_3^{-}) was monitored at fixed wavelength in the range 388-460 nm with iodide in sufficient excess to ensure first-order conditions. Plots of $\ln (A_{\infty} - A_t)$ vs. time were linear for at least 4 half-lives, indicating that the formation of iodine is first order in [Co^{III}]. Derived first-order rate constants k_{obsd} at three different acidities at 25.0 °C and I =2.0 M are collected in Table IV. At each acidity the data are well described by rate law 18, where $k_{obsd} = k_e + k_f[I^-]$.

$$d[I_2]/dt = -\frac{1}{2}d[Co^{III}]/dt = k_{obsd}[Co^{III}]$$
 (18)

Values of k_e and k_f from a linear regression fit are given in Table IV. The first-order rate constant k_e increases with increasing acidity, while the rate constant k_f is acid independent. The mechanism of eq 19-22 predicts the observed stoichiometry and rate law.

$$Co(py)_2(CO_3)(H_2O)_2^+ \xrightarrow{k_4} Co(py)_2(H_2O)_4^{3+} + CO_2$$
 (19)

$$Co(py)_2(CO_3)(H_2O)_2^+ + I^- \xrightarrow{\kappa_5}_{H^+} Co^{2+}(aq) + 2pyH^+ + I_1 + CO_2$$
 (20)

$$\operatorname{Co}(\mathrm{py})_2(\mathrm{H}_2\mathrm{O})_4^{3+} + \mathrm{I}^- \xrightarrow[\mathrm{H}^+]{} \operatorname{Co}^{2+} + 2\mathrm{py}\mathrm{H}^+ + \mathrm{I} \cdot (21)$$

$$2I \cdot \xrightarrow{fast} I_2$$
 (22)

The rate constant for reaction 21 (1.60 $M^{-1} s^{-1}$) at 25 °C and $I = 2.0 \text{ M})^{25}$ is much higher than that for reaction 20, ensuring that reactions 19 and 20 are the rate-determining steps. For this mechanism, $2k_e = k_4$ and $2k_f = k_5$. The value of $2k_e = k_a + k_b[H_3O^+]$ calculated from the data in Table I for decarboxylation of $Co(py)_2(CO_3)(H_2O)_2^+$ at each experimental acidity used for the reaction with iodide is in agreement, within experimental error, with the observed value. This confirms (within the precision limits of the data) that the $k_{\rm e}$ terms corresponds to decarboxylation reaction 19 and that the $k_{\rm f}$ term arises from direct reduction of Co(py)₂- $(CO_3)(H_2O)_2^+$ by iodide (reaction 20).

The rate constant k_5 is about 40 times less than that for the corresponding reduction of $Co(py)_2(H_2O)_4^{3+}$ by I⁻ (reaction 21) at 25 °C.²⁵ The rate constants for reduction of Co- $(py)_2(CO_3)(H_2O)_2^+$, $Co(py)_2(H_2O)_4^{3+,25}$ and $Co(NH_3)_2^{-1}$ $(H_2O)_4^{3+26}$ by iodide are all independent of reaction acidity, indicating that they all proceed through outer-sphere mechanisms.^{25,26}

Acknowledgment. This work was generously supported by grants from the Research Corp., which are gratefully acknowledged.

Registry No. cis-K[Co(py)₂(CO₃)₂], 54967-61-2; cis-Co(py)₂- $(CO_3)(H_2O)_2$, 73104-76-4; *cis*-Co(py)₂(H₂O)₄³⁺, 73136-37-5; I⁻, 20461-54-5.

- (25) Davies, G., to be submitted for publication.
- (26) Bodek, I.; Davies, G. Inorg. Chem. 1976, 15, 922.
- (27) Bodek, I.; Davies, G. Inorg. Chem. 1978, 17, 1814.

Contribution from the Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14214

Kinetics and Mechanism of the Complex Formation between Iron(III) and Some (Salicylato)pentaaminecobalt(III) Ions

A. C. DASH*1 and G. M. HARRIS*

Received November 19, 1981

Kinetic studies by the stopped-flow technique were made at 20-30 °C and I = 1.0 M (ClO₄⁻) of the formation and the dissociation of the binuclear complex of Fe(III) with (salicylato)pentaaminecobalt(III) ions, where the pentaamine residues are 5 NH₃, $(en)_2(NH_3)$, and tetraethylenepentamine. The formation of N₂CoSalFe⁴⁺ involves the reaction of the phenol form of the cobalt(III) substrates with $Fe(OH_2)_6^{3+}$ and $Fe(OH_2)_5(OH)^{2+}$. The rate constants and the activation parameters for both the paths are reported and compared with the available data for the corresponding reaction of the Fe(III) species with various other ligands. The carboxylate-bound (salicylato)pentaaminecobalt(III) substrates behave effectively as phenol with regard to their rate of complexation with the Fe(III) species. The rate data for the formation reactions are virtually independent of the nature of the amine function attached to the cobalt(III) center. It is concluded that the I_d mechanism applies in the reaction with $Fe(OH_2)_5(OH)^{2+}$, while for the corresponding reaction with $Fe(OH_2)_6^{3+}$, the mechanism is most likely of the Ia type. The binuclear species N5CoSalFe4+ undergoes dissociation to yield the cobalt(III) substrates and the Fe(III) species via spontaneous and acid-catalyzed paths. The rate parameters for both the paths are sensitive to the nature of the amine function and decrease in the sequence tetren > $(en)_2(NH_3) > 5 NH_3$. A comparison of the rate data for the spontaneous dissociation of the binuclear complexes with that for the mono(phenolato)iron(III) species $(C_6H_5OFe^{2+})$ reveals that the former are $\sim 10^3$ times kinetically less labile than the latter. This suggests that Fe(III) is chelated by the salicylate moiety through the Co(III)-bound carboxylate group and the free phenol group after deprotonation. The chelate ring opening appears to be rate determining in both the spontaneous and the acid-catalyzed paths. To make possible the comparisons just mentioned, we have made a separate study of the formation and decomposition reactions of the mono(salicylato)iron(III) complex in perchlorate media. Previous work on this system involved only the formation reaction and was done in nitrate media, which we have found to exhibit moderate catalytic behavior.

Introduction

In earlier studies, kinetic data for the metal ion catalyzed aquation of the (carboxylato)pentaamminecobalt(III) complexes derived from oxalic,² malonic,³ and salicylic acids⁴ have

On leave from the Department of Chemistry, Utkal University, Bhu-(1) baneswar-751004, India.

⁽²⁾ Dash, A. C.; Nanda, R. K. Inorg. Chem. 1974, 13, 655.

been reported. It was postulated that the metal ions associated with the cobalt(III) substrates to form binuclear complexes in a rapid and reversible step. These species, however, undergo ligand substitution at the cobalt(III) center at rates charac-

⁽a) Dash, A. C.; Nanda, R. K. J. Inorg. Nucl. Chem. 1975, 37, 2139. (3)

⁽⁴⁾

⁽b) Dash, A. C.; J. Inorg. Nucl. Chem. 1978, 40, 132.
(a) Dash, A. C.; Nanda, R. K. Inorg. Chem. 1973, 12, 2024. (b) Nanda, R. K.; Dash, A. C. J. Inorg. Nucl. Chem. 1974, 36, 1595.

Table I. UV-Visible Absorption Spectra of N_sCoSalH²⁺

complex	λ_{max} , nm	ϵ , M ⁻¹ cm ⁻¹	ref
Co(NH ₃), SalH ²⁺	505, 298	78.0, 4410	this work
•••	503, 298	76.0, 4400	10
	510, 298	82.4, 4417	4a
cis-Co(en), (NH ₃)SalH ²⁺	498, 298	110, 4420	this work
	500, 298	113, 4474	6
(αβS)-Co(tetren)SalH ²⁺	491, 298	170, 4318	9

teristic of the charge and size of the catalyst-metal ions and also the nature of the bridging carboxylate ligand. Independent equilibrium studies⁴⁻⁶ have also established that the equilibria $N_5CoOCOR^+ + M^{n+} \rightleftharpoons N_5CoOCORM^{(n+1)+}$ (where $R = CO_2^-$, $M^{n+} = Mn^{2+}$, Co^{2+} , Ni^{2+} , Cu^{2+} , Zn^{2+} , Fe^{3+} , $Ga^{3+}, Al^{3+}, In^{3+}; R = (C_6H_4 - o)O^-, M^{n+} = Fe^{3+}, Al^{3+}, Ga^{3+})$ are attained much more rapidly than the subsequent reaction, M^{n+} -catalyzed aquation at the cobalt(III) center of the binuclear species. Recently,⁷ we have been able to study the kinetics of formation and decomposition of binuclear ferric (oxalato)pentaamminecobalt(III) complex utilizing the stopped-flow technique. In continuation of this we now report a similar study involving the formation and decomposition of binuclear complexes of the (salicylato)pentaaminecobalt(III) moieties (N₅CoSalH²⁺, N₅ = 5 NH₃, (en)₂(NH₃), and tetren) with Fe(III).

An earlier study by Saini and Mentasti⁸ on the kinetics of formation of Fe(III)-monosalicylato complex was carried out in 1 M nitrate medium. Because of the possibility of appreciable medium effects, we deemed it worthwhile to reinvestigate the kinetics of the FeSal⁺ formation in perchlorate medium. We have also included a study of the kinetics of its dissociation reaction, data concerning which have not been previously reported.

Experimental Section

Materials and Method. $(\alpha\beta S)$ -(Salicylato)(tetraethylenepentamine)cobalt(III) perchlorate was prepared as described earlier.9 cis-(Salicylato)(ammine)bis(ethylenediamine)cobalt(III) perchlorate and (salicylato)pentaamminecobalt(III) perchlorate were prepared by the published methods.^{6,10} The UV-visible spectra of these complexes were in good agreement with those reported earlier (see Table I).

A stock solution of iron(III) perchlorate (G. F. Smith Chemical Co.) in perchloric acid was prepared and analyzed for iron(III) and acid contents by EDTA titration¹¹ and pH measurement, respectively. A Fisher Accumet pH meter, Model 420, equipped with a Markson combination electrode was used for pH measurements. The meter was standardized with perchloric acid solutions of known concentration. Sodium perchlorate was used for ionic strength adjustment. Solutions were prepared in laboratory distilled water, which was further purified by passing through a mixed-bed ion-exchange column. The spectral measurements were made on a Cary 118 spectrophotometer.

Kinetic Measurements. The kinetic studies were carried out at 20, 25 and 30 °C (±0.1 °C) and 1 M ionic strength with use of a Durrum 110 stopped-flow assembly. The concentraton of complex used was $(3.2-7.1) \times 10^{-4}$ M. The formation of the binuclear complex, $N_5CoSalFe^{4+}$, was observed through the increase of absorbance at 540 nm¹² with time when equal volumes of the thermally equilibrated solutions of iron(III) perchlorate and the complex (I = 1 M), both

- (6) Dash, M. S.; Dash, A. C. J. Inorg. Nucl. Chem. 1976, 38, 571.
 (7) Dash, A. C.; Harris, G. M. Inorg. Chem., 1982, 21, 1265.
- (8) Saini, G.; Mentasti, E. Inorg. Chim. Acta 1970, 4, 585.
- (9) Dash, A. C.; Harris, G. M. Inorg. Chem. 1981, 20, 4011.
 (10) Gould, E. S.; Taube, H. J. Am. Chem. Soc. 1964, 86, 1318.
- (11) Cheng, K. L.; Bray, R. H.; Kurtz, T. Anal. Chem. 1953, 25, 347.
 (12) N₃CoSalFe⁴⁺ species have a broad peak around 540 nm. evalues at 540 nm for (NH₃)₅CoSalH²⁺ and (NH₃)₅CoSalFe⁴⁺ are approximately 61 and 1590 M⁻¹ cm⁻¹, respectively.⁴⁴

of known acid concentration, were mixed. The (salicylato)(tetraethylenepentamine)cobalt(III) complex was found to precipitate slowly in 1 M ClO₄⁻ medium during the time of thermal equilibration. It was, therefore, preferable for this system to use iron(III) perchlorate solution adjusted to I = 2 M; the complex solution was prepared in 0.001 M perchloric acid. The rate measurements were made under pseudo-first-order conditions, i.e., total [Fe(III)]/total [complex] = $[Fe^{3+}]_T/[complex]_T \ge 5$. For the study of the acid-catalyzed dissociation of the binuclear species, solutions of iron(III) perchlorate $([Fe^{3+}]_T = 1.05 \times 10^{-3}, [HClO_4]_T = 1.2 \times 10^{-3} \text{ M})$ and the complex $([complex]_T = (1.5-2.6) \times 10^{-4} \text{ M})$ were mixed and equilibrated. Equal volumes of this solution and thermally equilibrated perchloric acid solution of (I = 2 M) were mixed in the stopped-flow setup, and the disappearance of $N_5CoSalFe^{4+}$ was followed by observing the decrease of absorbance at 540 nm with time. The kinetics of formation and acid-catalyzed dissociation of FeSal⁺ were studied by following exactly similar procedure; the wavelength of measurement was also 540 nm, at which FeSal⁺ is the only absorbing species.¹³ Each rate measurement was repeated at least five times. The observed rate constants were calculated from the digitalized stopped-flow data by a least-squares program adapted to a Wang 600 programmable calculator.

Results and Discussion

Formation of FeSal⁺. Rate data under varying conditions of acidity and $[Fe^{3+}]_T$ are collected in Table II. The observed pseudo-first-order rate constants at a given acidity fit the equation

$$k_{\rm obsd} = k_{\rm f}[{\rm Fe}^{3+}] + k_{\rm r} \tag{1}$$

In this

$$[Fe^{3+}] = [Fe(OH_2)_6^{3+}] = [Fe^{3+}]_T[[H^+]/([H^+] + K_h)]$$
(2)

and K_h , the hydrolysis constant for $Fe(OH_2)_6^{3+}$, has values as found in the literature.¹⁴ The parameter k_r increases with $[H^+]$, being virtually zero at the lowest acidity ($[H^+] = 0.01$ M), and is assumed to relate to acid-catalyzed aquation of FeSal⁺, the spontaneous aquation of which is negligible. The parameter $k_{\rm f}$ exhibits greater than first-order dependence on $1/[H^+]$, consistent with the assumption that both Fe³⁺ and FeOH²⁺ (\equiv Fe(H₂O)₅OH²⁺) react with both H₂Sal and HSal⁻, as proposed by Saini and Mentasti.⁸ A reaction mechanism based on these concepts is shown in Scheme I.

Scheme I

$$H_{2}Sal \stackrel{K_{4}}{\longleftrightarrow} HSal^{-} + H^{+}$$

$$Fe^{3+} + HSal^{-} \stackrel{k_{1}}{\longrightarrow} FeSal^{+} + H^{+}$$

$$FeOH^{2+} + HSal^{-} \stackrel{k_{2}}{\longrightarrow} FeSal^{+} + H_{2}O$$

$$FeOH^{2+} + H_{2}Sal \stackrel{k_{3}}{\longrightarrow} FeSal^{+} + H_{3}O^{+}$$

$$Fe^{3+} + H_{2}Sal \stackrel{k_{4}}{\longrightarrow} FeSal^{+} + 2H^{+}$$

$$FeSal^{+} + H^{+} \stackrel{K_{H}}{\longleftrightarrow} FeSalH^{2+}$$

$$FeSalH^{2+} \stackrel{k_{3}}{\longrightarrow} Fe^{3+} + HSal^{-}$$

respectively. (14) The hydrolysis constant (K_h) of Fe(OH₂)₆³⁺ was taken to be 1.26 × 10⁻³, 1.69 × 10⁻³, and 2.29 × 10⁻³ M at 20, 25, and 30 °C (Milburn, R. M. J. Am. Chem. Soc. 1957, 79, 537). The concentration of H⁺ was calculated from the relationship $[H^+] = 0.5[b + (b^2 + 4cK_h)^{1/2}]$, where $b = [HClO_4] - K_h \text{ and } c = [HClO_4] + [Fe^{3+}]_T.$

⁽⁵⁾ (a) Dash, A. C.; Nanda, R. K.; Patnaik, H. K. Aust. J. Chem. 1975, 28, 1613. (b) Nanda, R. K.; Dash, A. C.; Patnaik, H. K. J. Inorg. Nucl. Chem. 1977, 39, 2087.

⁽¹³⁾ Saini and Mentasti⁸ report $\epsilon = 1470 \pm 30 \text{ M}^{-1} \text{ cm}^{-1}$ for FeSal⁺ at 540 nm and $K = 506 \pm 6$ at 20 °C ($I = 1.0 \text{ M NO}_3^{-}$) for the forward equilibrium quotient of the reaction $Fe^{3+} + HSa^{-} \Rightarrow FeSa^{+} + H^{+}$. Our values for ϵ and K at 20 °C in 1.0 M perchlorate medium from an independent equilibrium study are $1390 \pm 90 \text{ M}^{-1} \text{ cm}^{-1}$ and 540 ± 34 , respectively.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $		20.0 °C		25	5.0 °C	30.0 °C		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10^{2} [HClO ₄],	10^{3} [Fe ³⁺] _T ,	······	10^{3} [Fe ³⁺] _T	10^{3} [Fe ³⁺] _T ,			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	M	M	k_{obsd}, s^{-1}	M	k_{obsd}, s^{-1}	M	k_{obsd}, s^{-1}	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.0	1.26	0.56 ± 0.04	1.05	0.84 ± 0.02	1.05	1.42 ± 0.02	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.0	1.86	0.82 ± 0.04	2.00	1.44 ± 0.04	2.00	2.53 ± 0.07	
	1.0	2.52	1.12 ± 0.08	2.96	2.26 ± 0.05	3.00	3.97 ± 0.11	
	1.0	3.36	1.53 ± 0.05	4.00	3.06 ± 0.03	4.00	5.30 ± 0.09	
	1.0	4.20	1.95 ± 0.02	5.05	3.80 ± 0.06	5.05	6.83 ± 0.10	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$k_{f}, M^{-1} s^{-1} k_{r}, s^{-1}$	533 0.0	± 9 5 ± 0.02	856 ± 0.03	= 20 ± 0.06	1 63 0.01	6 ± 30 7 ± 0.08	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2.5	5.25	0.87 ± 0.04	2.00	0.75 ± 0.03	2.00	1.28 ± 0.04	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.5	10.0	1.74 ± 0.04	4.00	1.25 ± 0.04	4.00	2.12 ± 0.08	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.5	10.5	1.65 ± 0.04	6.00	1.78 ± 0.09	6.00	3.01 ± 0.07	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2.5	20.0	3.27 ± 0.13	10.0	2.98 ± 0.07	10.0	5.04 ± 0.06	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2.5	21.0	3.42 ± 0.09					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$k_{f}, M^{-1} s^{-1} k_{r}, s^{-1}$	170 0.03	± 5 ± 0.07	297 ± 0.15	= 9 ± 0.05	513 0.2	± 16 7 ± 0.09	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5.0	2.00	0.45 ± 0.01	2.00	0.70 ± 0.02	2.00	1 13 + 0.03	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5.0	4.00	0.56 ± 0.01	4.00	0.92 ± 0.02	4.00	1.15 ± 0.05 1 46 + 0 02	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5.0	6.00	0.71 ± 0.01	6.00	1.13 ± 0.01	6.00	1.83 ± 0.02	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5.0	10.0	1.21 ± 0.02	10.0	1.60 ± 0.04	10.0	2.70 ± 0.07	
$ \begin{array}{c} k_{t}, M^{-1} s^{-1} & \begin{array}{c} 78.4 \pm 4.8 \\ 0.30 \pm 0.06 \end{array} & \begin{array}{c} 128 \pm 3 \\ 0.41 \pm 0.03 \end{array} & \begin{array}{c} 219 \pm 5 \\ 0.63 \pm 0.05 \end{array} \\ \begin{array}{c} 10.0 & 2.51 \\ 10.0 & 5.25 \\ 0.63 \pm 0.01 \end{array} & \begin{array}{c} 2.00 \\ 0.91 \pm 0.03 \end{array} & \begin{array}{c} 2.00 \\ 1.02 \pm 0.04 \end{array} & \begin{array}{c} 4.00 \\ 1.00 \end{array} & \begin{array}{c} 1.29 \pm 0.05 \\ 1.53 \pm 0.04 \end{array} \\ \begin{array}{c} 10.0 \\ 10.0 \end{array} & \begin{array}{c} 10.5 \\ 10.0 \end{array} & \begin{array}{c} 1.05 \\ 10.0 \end{array} & \begin{array}{c} 1.16 \pm 0.02 \\ 10.0 \end{array} & \begin{array}{c} 20.0 \\ 1.35 \pm 0.04 \end{array} & \begin{array}{c} 10.0 \\ 10.0 \end{array} & \begin{array}{c} 2.08 \pm 0.05 \\ 1.15 \pm 0.03 \end{array} \\ \begin{array}{c} 10.0 \end{array} & \begin{array}{c} 1.35 \pm 0.04 \\ 10.0 \end{array} & \begin{array}{c} 10.0 \\ 10.0 \end{array} & \begin{array}{c} 1.35 \pm 0.04 \\ 10.0 \end{array} & \begin{array}{c} 10.0 \\ 10.0 \end{array} & \begin{array}{c} 2.08 \pm 0.03 \\ 1.15 \pm 0.03 \end{array} \\ \begin{array}{c} 20.0 \\ 20.0 \end{array} & \begin{array}{c} 2.25 \\ 0.88 \pm 0.01 \\ 20.0 \end{array} & \begin{array}{c} 5.05 \\ 1.48 \pm 0.05 \\ 20.0 \end{array} & \begin{array}{c} 5.05 \\ 2.26 \pm 0.10 \\ 20.0 \end{array} & \begin{array}{c} 2.06 \\ 20.0 \end{array} & \begin{array}{c} 2.00 \\ 1.05 \end{array} & \begin{array}{c} 0.93 \pm 0.03 \\ 20.0 \end{array} & \begin{array}{c} 2.00 \\ 1.0 \pm 0.03 \end{array} & \begin{array}{c} 2.00 \\ 20.0 \end{array} & \begin{array}{c} 2.06 \\ 20.0 \end{array} & \begin{array}{c} 2.06 \\ 20.0 \end{array} & \begin{array}{c} 2.06 \\ 20.0 \end{array} & \begin{array}{c} 2.11 \pm 0.04 \\ 29.6 \\ 20.0 \end{array} & \begin{array}{c} 2.12 \pm 0.10 \\ 29.6 \\ 20.0 \end{array} & \begin{array}{c} 2.06 \\ 20.0 \end{array} & \begin{array}{c} 2.06 \\ 31.0 \pm 0.05 \\ 30.0 \end{array} & \begin{array}{c} 3.75 \pm 0.11 \\ 8.75 \pm 0.11 \\ 80.0 \end{array} & \begin{array}{c} 5.89 \pm 0.01 \\ 100.0 \end{array} & \begin{array}{c} 4.440 \\ 0.08 \end{array} & \begin{array}{c} 0.37 \pm 0.02 \\ 100.0 \end{array} & \begin{array}{c} 4.76 \pm 0.7 \\ 2.04 \pm 0.04 \\ \end{array} \\ \end{array} $	5.0	20.0	1.80 ± 0.02	20.0	2.92 ± 0.08	20.0	4.86 ± 0.05	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$k_{\rm f}, {\rm M}^{-1} {\rm s}^{-1} {\rm k}_{\rm r}, {\rm s}^{-1}$	78.4 0.30	± 4.8 ± 0.06	128 ± 0.41	= 3 ± 0.03	219 0.63	± 5 3 ± 0.05	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10.0	2.51	0.57 ± 0.01	2.00	0.91 ± 0.03	2.00	1.29 + 0.05	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10.0	5.25	0.63 ± 0.01	4.00	1.02 ± 0.04	4.00	1.53 ± 0.04	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10.0	10.0	0.89 ± 0.07	6.00	1.14 ± 0.03	6.00	1.73 ± 0.04	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10.0	10.5	0.80 ± 0.03	10.0	1.35 ± 0.04	10.0	2.08 ± 0.05	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10.0	21.0	1.16 ± 0.02	20.0	1.89 ± 0.02	20.0	2.97 ± 0.18	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10.0	40.0	1.94 ± 0.04					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$k_{f}, M^{-1} s^{-1} k_{r}, s^{-1}$	36.8 0.46	± 1.8 ± 0.03	55.3 0.805	± 0.5 5 ± 0.005	93.1 1.1	7 ± 2.4 5 ± 0.03	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20.0	5 25	0.88 + 0.01	5.05	1 48 + 0 05	5.05	2.26 ± 0.10	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20.0	10.5	0.03 ± 0.01 0.93 + 0.03	10.0	1.40 ± 0.00	10.0	2.20 ± 0.10 2 49 + 0 03	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20.0	21.0	1.01 ± 0.03	20.0	1.90 ± 0.01	20.0	3.00 ± 0.07	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20.0	31.5	1.11 ± 0.04	29.6	2.12 ± 0.10	29.6	3.40 ± 0.06	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20.0			40.0	2.51 ± 0.10	40.0	3.97 ± 0.06	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20.0			80.0	3.75 ± 0.11	80.0	5.89 ± 0.17	
$k_{f}, M^{-1} s^{-1}$ 8.74 ± 0.24 31.0 ± 0.6 47.6 ± 0.7 k_{r}, s^{-1} 0.833 ± 0.005 1.29 ± 0.03 2.04 ± 0.04 30.0 5.25 1.13 ± 0.02 30.0 2.04 ± 0.04 30.0 10.5 1.17 ± 0.02 30.0 21.0 1.25 ± 0.05 30.0 31.5 1.30 ± 0.02 $k_{f}, M^{-1} s^{-1}$ 6.57 ± 0.51 1.10 ± 0.01	20.0			100.0	4.40 0.08	100.0	6.67 ± 0.27	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$k_{\rm f}, {\rm M}^{-1} {\rm s}^{-1} k_{\rm r}, {\rm s}^{-1}$	8.74 0.83	± 0.24 3 ± 0.005	31.0 1.29	± 0.6 ± 0.03	47.6 2.04	5 ± 0.7 + ± 0.04	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30.0	5.25	1.13 ± 0.02					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30.0	10.5	1.17 ± 0.02					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30.0	21.0	1.25 ± 0.02					
$k_t, M^{-1} s^{-1}$ 6.57 ± 0.51 k_x, s^{-1} 1.10 ± 0.01	30.0	31.5	1.30 ± 0.02					
$\kappa_{r}, s^{-1} = 1.10 \pm 0.01$	$k_{f}, M^{-1} s^{-1}$	6.57	± 0.51					
	$\kappa_{\rm r}$, s ⁻¹	1.10	± 0.01	_				

 ${}^{a}I = 1.0 \text{ M} (\text{ClO}_{4}); [\text{H}_{2}\text{Sal}]_{\text{T}} = (2.86-5.73) \times 10^{-4} \text{ M}.$ B Rate constants as defined in eq 1.

For such a scheme the observed pseudo-first-order rate constant is given by eq 1, with

$$k_{\rm f} = \frac{(k_1 K_{\rm d} + k_3 K_{\rm h}) + k_2 K_{\rm h} K_{\rm d} / [{\rm H}^+] + k_4 [{\rm H}^+]}{[{\rm H}^+] + K_{\rm d}} \quad (3)$$

and

$$k_{\rm r} = \frac{k_{\rm 5} K_{\rm H} [{\rm H}^+]}{1 + K_{\rm H} [{\rm H}^+]} \tag{4}$$

The concentration of hydrogen ion was computed after taking into account the hydrolysis of Fe³⁺ (i.e., [H⁺] = [HClO₄] + [FeOH²⁺]).¹⁴ Values of k_f and k_r at specified acidities were obtained as the slope and intercept of the least-squares plots of k_{obsd} vs. [Fe³⁺] using the data of Table II and eq 2 and the known values of K_h .¹⁴ Plots of $k_f([H^+] + K_d)$ vs. [H⁺]⁻¹ also yielded straight lines, indicating that $k_4[H^+] << \{(k_1K_d + k_3K_h) + k_2K_hK_d/[H^+]\}$ under the experimental conditions. Our

data, therefore, do not reveal the k_4 path (i.e., that involving reaction of Fe³⁺ with H₂Sal). At 25 °C and $I = 1.0 \text{ M} (\text{NO}_3^{-})$ Saini and Mentasti,⁸ however, report $k_4 = 3 \pm 1 \text{ s}^{-1} \text{ M}^{-1}$. The slopes and intercepts of these plots yield values of $(k_1K_d +$ $k_3 K_h$) and $k_2 K_h K_d$. At 25 °C (I = 1 M) the values of K_h and K_d are almost identical (1.6 ×10⁻³ M).^{8,14} This enables us to deduce that $(k_1 + k_3) = 3 \times 10^3 \text{ M}^{-1} \text{ s}^{-1}$ at 25 °C. A discussion of various substitution reactions of Fe³⁺ and FeOH²⁺ has appeared recently,¹⁵ which shows conclusively that reactions of ligands of charge 1- or 0 should react with secondorder rate constants of the order of magnitude $10^3 \text{ M}^{-1} \text{ s}^{-1}$ with FeOH²⁺ but in general very much more slowly with Fe³⁺. We can, therefore, assume for our system that $k_3 >> k_1$, so that $k_3 \approx 3 \times 10^3 \text{ M}^{-1} \text{ s}^{-1}$ at 25 °C, in good agreement with the value of $\sim 2 \times 10^3$ M⁻¹ s⁻¹ recorded for several other uncharged entering ligands.¹⁵ The values deduced for k_2 and k_3 at various temperatures (neglecting k_1) are recorded in Table

⁽¹⁵⁾ Grant, M.; Jordan, R. B. Inorg. Chem. 1981, 20, 55.

Table III. Rate Parameters for the Formation of FeSal^{+ a}

•	temp, °C	$\frac{k_1 K_d}{k_3 K_h, s^{-1}}$	$\frac{10^2 k_2 K_{\rm h} K_{\rm d} M}{\rm s^{-1}}$	$10^{-4}k_2,$ M ⁻¹ s ⁻¹	$\frac{10^{-3}k_3}{M^{-1} s^{-1}}$
	20.0	3.46 ± 0.01	2.97 ± 0.01	1.47 ± 0.01	2.75 ± 0.01
	25.0	5.71 ± 0.28	4.85 ± 0.58	1.85 ± 0.22 $(1.40 \pm 0.10)^{b}$	3.48 ± 0.17 $(5.5 \pm 0.5)^{b}$
	30.0	8.94 ± 0.28	11.6 ± 0.6	3.23 ± 0.17	3.99 ± 0.13
,	$\Delta H^{\ddagger}, \mathbf{k}$	$cal mol^{-1}$		13.3 ± 3.4	6.0 ± 0.9
	до , ca		h -	+0 ± 11	-22 1 3

^a $I = 1.0 \text{ M} (\text{ClO}_4^{-})$. ^b Data reported by Saini and Mentasti⁸ at $I = 1.0 \text{ M} (\text{NO}_3)$.

Table IV. Rate Data for the Acid-Catalyzed Dissociation of FeSal*

(HClO.].	$k_{obsd}, s^{-1}a$						
M	20.0 °C	25.0 °C	30.0 °C				
0.051	0.375 ± 0.003	0.560 ± 0.008	0.813 ± 0.066				
0.101	0.566 ± 0.003	0.846 ± 0.022	1.19 ± 0.02				
0.151	0.745 ± 0.013	1.08 ± 0.03	1.57 ± 0.05				
0.201	0.920 ± 0.023	1.33 ± 0.02	1.97 ± 0.05				
0.251	1.07 ± 0.01	1.56 ± 0.02	2.28 ± 0.10				
0.301	1.18 ± 0.02	1.78 ± 0.02	2.56 ± 0.06				
0.351	1.31 ± 0.01	1.99 ± 0.05	2.90 ± 0.05				
0.401	1.41 ± 0.03	2.20 ± 0.05	3.31 ± 0.06				
0.451	1.44 ± 0.02	2.39 ± 0.08	3.67 ± 0.04				
0.501	1.54 ± 0.03	2.55 ± 0.06	3.77 ± 0.12				
0.601	1.80 ± 0.02	2.72 ± 0.10	3.92 ± 0.07				
0.701	1.91 ± 0.06	2.93 ± 0.06	4.40 ± 0.13				
0.801	2.12 ± 0.03	3.23 ± 0.06	4.68 ± 0.11				
0.901	2.25 ± 0.04	3.45 ± 0.07	4.89 ± 0.12				
1.001	2.39 ± 0.03	3.55 ± 0.10	5.37 ± 0.27				
k_{s}, s^{-1}	3.31 ± 0.10	5.46 ± 0.20	9.20 ± 0.27				
$K_{\rm H}, {\rm M}^{-1}$	1.88 ± 0.06	1.64 ± 0.06	1.32 ± 0.04				
	$\Delta H_{s}^{\pm} = 17.5 \pm 0$ $\Delta S_{s}^{\pm} = +3.4 \pm 1$ $\Delta H_{H}^{\circ} = -6.2 \pm 0$ $\Delta S_{H}^{\circ} = -20 \pm 2$	0.4 kcal mol ⁻¹ 3 cal K ⁻¹ mol ⁻¹ 0.9 kcal mol ⁻¹ cal K ⁻¹ mol ⁻¹					
a [Fe ³⁺]T =	$= 1.05 \times 10^{-3} \text{ M},$	$[H_2Sa1]_T = 2.00 \times$	(10 ⁻⁴ M.				

III, and it is seen that k_2 also fits the general pattern for FeOH²⁺ substitution,^{15,16} since many singly charged anions ligate with second-order rate constants of $\sim 10^4$ M⁻¹ s⁻¹. It is noteworthy that, while we observed measurable NO_3^- catalysis in this reaction,¹⁷ it is only moderately significant. It is not surprising, therefore, that our derived values for k_2 and k_3 do not differ greatly from those obtained previously⁸ in nitrate media, as noted in Table III. It is possible, however, that the NO₃⁻ catalysis enlarges k_4 sufficiently to have permitted its estimation by Saini and Mentasti,⁸ though not by us in perchlorate medium, as mentioned earlier.

Acid-Catalyzed Aquation of FeSal⁺. The rate constants (k_{r}) for the acid-catalyzed aquation of FeSal⁺ at various acidities were obtained from the observed pseudo-first-order rate constants (see Table IV) after correcting for the contribution of the forward reaction $(k_r = k_{obsd} - k_f [Fe^{3+}])$. The plots of k_r vs. [H⁺] show asymptotic behavior at high [H⁺] and extrapolate to zero at $[H^+] = 0$. This establishes the absence of the spontaneous aquation path of FeSal⁺ as pointed out earlier. The best-fit least-squares plots (Figure 1) of $1/k_r$ vs. $1/[H^+]$ (according to the reciprocal form of eq 4) yield the rate parameters that are given in Table IV. The protonation site is almost certainly the coordinated phenoxide group of FeSal⁺ as this is by far the most basic site. It is of interest to point

Figure 1. $1/(k_{obsd} - k_f[Fe^{3+}])$ vs. $1/[H^+]$ plot for the acid-catalyzed aquation of FeSal⁺. Correlation coefficient is 0.999 at 20 °C (open circles), 25 °C (triangles), and 30 °C (closed circles).

out the large enhancement of the acidity of ligands coordinated to Fe³⁺ ion. In the present instance, the value¹⁸ of pK_{HSal} is ~13.6 at 25 °C, over 13 units higher than the pK for proton release from FeSalH²⁺ under comparable conditions ($pK_{\rm H}$ = -0.2 at 25 °C). A similar change is noted in comparing the acidity of coordinated water in $Fe(OH_2)_6^{3+}$ (p $K_h = 2.8^{14}$ at 25 °C) with that of pure water. Such a large effect is observed in very few other triply charged aquo complex ions. The rate constant k_5 for the dissociation of HSal⁻ from FeSalH²⁺ most likely relates to the opening of the Fe-phenol chelate ring. The rate constant for the dissociation of a series of monodentate phenoxide species ($C_6H_4(X)OFe^{2+}$) is reported¹⁹ to be 10² M⁻¹ s⁻¹ at 25 °C and I = 0.1 M, about 50 times greater than k_s . This is consistent with the persistence of the relatively stable Fe(III)-salicylate chelate ring even after protonation of the bound phenoxide group. The high value of ΔH^* also supports the dissociative ring-opening concept of the reaction mechanism.

Formation of N₅CoSalFe⁴⁺. Rate data for this formation reaction are collected in Table V. It is evident that the pseudo-first-order rate constants at a given acidity increase with $[Fe^{3+}]_T$. The slope and intercept of the plot of k_{obsd} vs. $[Fe^{3+}]_T$ at a fixed $[H^+]$ are identified with the pseudo-firstorder rate constants for the formation and the dissociation of the binuclear species, respectively. The slopes of such plots at different acidities when plotted against 1/[H⁺] yield straight lines with positive intercepts and slopes, indicating thereby that the formation of N₅CoSalFe⁴⁺ occurs via two different paths, one independent of $[H^+]$ and another dependent on $1/[H^+]$. Over the whole experimental acidity range, the (salicylato)cobalt(III) substrate exists in the monoprotonated phenol form $(pK_{OH} > 10)$.^{6,20} It is, therefore, reasonable to assume that the acid dependence of the reaction results only from the $Fe(OH_2)_6^{3+}/Fe(OH_2)_5(OH)^{2+}$ equilibrium. The overall

⁽¹⁶⁾

Mentasti, E. Inorg. Chem. 1979, 18, 1512. At 20 °C and I = 1.0 M, the values of k_{obad} (s⁻¹) in mixed NO₃⁻/ClO₄⁻ media were found to be 1.94 ± 0.06 , $2.15 \oplus 0.04$, 2.46 ± 0.06 , and 2.72 ± 0.08 at [NO₃⁻] = 0, 0.1, 0.3, and 0.5 M, respectively, when [Fe³⁺]_T = 0.04, [HClO₄] = 0.1, and [H₂Sal]_T = 2.86 × 10⁻⁴ M. (17)

⁽¹⁸⁾ Ernst, Z. L.; Menashi, J. Trans. Faraday Soc. 1963, 59, 2838.

⁽¹⁹⁾ Cavasino, F. P.; Dio, E. D. J. Chem. Soc. 1903, 97, 2005
(20) Liang, A.; Gould, E. S. J. Am. Chem. Soc. 1970, 1151.
(21) Gouger, S.; Stuehr, J. Inorg. Chem. 1974, 13, 379.
(22) Pandey, R. N.; Smith, M. W. Can. J. Chem. 1972, 50, 194.

	10 ³ [Fe ³⁺] _T ,	$10^{2}[HClO_{4}],$		10 ³ [Fe ³⁺] _T ,	10^{2} [HClO ₄],	
N ₅	Μ	М	k_{obsd}, s^{-1}	M	М	k_{obsd}, s^{-1}
			20 °C			
5 NH3	2.62	2.60	0.228 ± 0.003	10.1	10.1	0.260 ± 0.013
	5.25	2.60	0.296 ± 0.008	15.7	10.1	0.330 ± 0.022
	10.5	2.60	0.469 ± 0.011	20.0	10.1	0.340 ± 0.010
	21.0	2.60	0.766 ± 0.007	29.6	10.1	0.443 ± 0.006
	2.62	5.10	0.190 ± 0.011	40.0	10.1	0.542 ± 0.006
	5 25	5 10	0.243 ± 0.008	5 25	20.1	0.136 ± 0.011
	10.5	5 10	0.342 ± 0.006	10.5	20.1	0.180 ± 0.010
	15.7	5 10	0.433 ± 0.014	21.0	20.1	0.100 ± 0.010
	20.0	5.10	0.495 ± 0.014	21.0	20.1	0.247 ± 0.013
	20.0	5.10	0.475 ± 0.000	5 25	20.1	0.290 ± 0.009
	29.0	5.10	0.070 ± 0.020	10.5	20.1	0.147 ± 0.013
	252	10.1	0.91 ± 0.03	21.0	20.1	0.105 ± 0.015
	2.32	10.1	0.100 ± 0.003	21.0	30.1	0.190 ± 0.001
	5.25	10.1	0.197 ± 0.012	31.5	30.1	0.250 ± 0.010
			25 °C			
	2.52	2.60	0.332 ± 0.020	29.6	5.10	1.15 ± 0.01
	4.96	2.60	0.460 ± 0.010	40.0	5.10	1.48 ± 0.02
	10.0	2.60	0.717 ± 0.033	2.52	10.1	0.287 ± 0.010
	20.0	2.60	1.20 ± 0.02	4.96	10.1	0.332 ± 0.004
	2 5 2	5.10	0.309 ± 0.02	10.0	10.1	0.332 ± 0.004
	4.96	5 10	0.384 ± 0.007	20.1	10.1	0.412 ± 0.011
	10.0	5 10	0.547 ± 0.007	20.1	10.1	0.303 ± 0.003
	20.0	5.10	0.947 ± 0.009	29.0	10.1	0.741 ± 0.030
	20.0	5.10	0.852 ± 0.014	40.0	10.1	0.908 ± 0.019
			30.0 °C			
	2.52	2.60	0.469 ± 0.014	29.6	5.10	1.91 ± 0.04
	4 96	2.60	0.787 ± 0.033	40.0	5 10	257 ± 0.15
	10.0	2.60	1.20 ± 0.14	2.52	10.1	0.483 ± 0.026
	20.0	2.00	2.04 ± 0.10	4 96	10.1	0.105 ± 0.020
	20.0	2.00	2.07 ± 0.10	10.0	10.1	0.570 ± 0.015
	2.52	5.10	0.528 ± 0.020	10.0	10.1	0.087 ± 0.020
	4.90	5.10	0.042 ± 0.012	20.0	10.1	1.01 ± 0.03
	10.0	5.10	0.891 ± 0.011	29.0	10.1	1.30 ± 0.03
	20.0	5.10	1.43 ± 0.03	40.0	10.1	1.59 ± 0.03
			20.0 °C			
(en).(NH.)	2.53	2.60	0.255 ± 0.005	29.6	5 10	0.683 ± 0.012
(011)2(11-3)	4 96	2.60	0.318 ± 0.003	40.0	5.10	0.891 ± 0.022
	10.0	2.60	0.510 ± 0.000	2.53	10.1	0.001 ± 0.0022
	20.0	2.00	0.760 ± 0.012	4 96	10.1	0.219 ± 0.005
	20.0	5.10	0.723 ± 0.029	10.0	10.1	0.240 ± 0.000
	1.05	5.10	0.223 ± 0.009	20.0	10.1	0.290 ± 0.003
	4.90	5.10	0.264 ± 0.009	20.0	10.1	0.387 ± 0.013
	10.0	5.10	0.335 ± 0.014	29.6	10.1	0.472 ± 0.004
	20.0	5.10	0.510 ± 0.005	40.0	10.1	0.372 ± 0.005
			25 °C			
	2.52	2.60	0.443 ± 0.005	29.6	5.10	1.22 ± 0.03
	4.96	2.60	0.557 ± 0.003	40.0	5.10	1.51 ± 0.07
	10.0	2.60	0.903 ± 0.005	2.52	10.1	0.383 ± 0.022
	20.0	2.60	1.29 ± 0.04	4 96	10.1	0.423 ± 0.008
	2 5 2	5.10	0.400 ± 0.005	10.0	10.1	0.509 ± 0.008
	4 96	5 10	0.471 ± 0.009	20.0	10.1	0.675 ± 0.021
	10.0	5.10	0.601 ± 0.008	29.6	10.1	0.075 ± 0.021 0.827 + 0.017
	20.0	5.10	1.05 ± 0.000	40.0	10.1	0.027 ± 0.017
	20.0	0.10	1.00 = 0.00		10.1	0.762 ± 0.010
			30 °C			
	2.52	2.60	0.657 ± 0.006	29.6	5.10	1.78 ± 0.06
	4.96	2.60	0.810 ± 0.009	40.0	5.10	2.23 ± 0.04
	10.0	2.60	1.24 ± 0.02	2.52	10.1	0.561 ± 0.007
	20.0	2.60	1.94 ± 0.05	4.96	10.1	0.628 ± 0.009
	2.52	5.10	0.601 ± 0.011	10.0	10.1	0.784 ± 0.011
	4.96	5.10	0.723 ± 0.012	20.0	10.1	1.05 ± 0.05
	10.0	5.10	0.919 ± 0.010	29.6	10.1	1.29 ± 0.03
	20.0	5.10	1.39 ± 0.02	40.0	10.1	1.53 ± 0.02
						1100 = 0.02
		.	20.0 °C			
tetren	2.62	2.60	0.48 ± 0.01	21.0	10.0	0.63 ± 0.01
	5.25	2.60	0.52 ± 0.04	31.5	10.0	0.75 ± 0.01
	10.5	2.60	0.65 ± 0.02	5.25	20.0	0.49 ± 0.01
	21.0	2.60	0.867 ± 0.003	10.5	20.0	0.53 ± 0.01
	5.25	5.05	0.509 ± 0.004	21.0	20.0	0.60 ± 0.02
	7.85	5.05	0.561 ± 0.011	31.5	20.0	0.64 ± 0.01
	10.5	5.05	0.617 ± 0.011	5.25	30.0	0.48 ± 0.01
	13.1	5.05	0.662 ± 0.013	10.5	30.0	0.519 ± 0.008
	15.75	5.05	0.715 ± 0.004	21.0	30.0	0.54 ± 0.01
	21.0	5.05	0.764 ± 0.005	31.5	30.0	0.61 ± 0.02
	26.2	5.05	0.87 ± 0.07	5.25	40.0	0.485 ± 0.008
	31.5	5.05	0.96 ± 0.02	10.5	40.0	0.52 ± 0.01
	36.7	5.05	1.06 ± 0.01	21.0	40.0	0.540 ± 0.009

Table	v	(Continued)
I able	v	(Continuea)

N.	10 ³ [Fe ³⁺] _T , M	10 ² [HClO ₄], M	karas 5-1	10 ³ [Fe ³⁺] _T , M	10 ² [HClO ₄], M	kalad s ⁻¹
						"ODSQ, 3
tetren	42.0	5.05	1.10 ± 0.04			
	5.25	10.0	0.495 ± 0.009			
	10.5	10.0	0.560 ± 0.007			
			25 °C			
	2.52	2.60	0.83 ± 0.01	10.0	10.1	0.95 ± 0.01
	4.96	2.60	0.93 ± 0.01	20.0	10.1	1 12 + 0.02
	10.0	2.60	1.15 ± 0.06	29.6	10.1	1.27 ± 0.02
	20.0	2.60	1.59 ± 0.04	40.0	10.1	1.45 ± 0.05
	2.52	5.10	0.835 ± 0.005	10.0	20.0	0.95 ± 0.03
	4.96	5.10	0.896 ± 0.005	20.0	20.0	1.05 ± 0.02
	10.0	5.10	1.03 ± 0.02	29.6	20.0	1.15 ± 0.02
	20.0	5.10	1.31 ± 0.08	40.0	20.0	1.27 ± 0.02
	29.6	5.10	1.58 ± 0.04	10.0	30.0	0.90 ± 0.02
	40.0	5.10	1.81 ± 0.05	20.0	30.0	0.99 ± 0.01
	2.52	10.1	0.83 ± 0.01	29.6	30.0	1.07 ± 0.02
	4.96	10.1	0.87 ± 0.02	40.0	30.0	1.17 ± 0.02
			30.0 °C			
	2.62	2.60	1.19 ± 0.02	5.25	10.1	1.34 ± 0.05
	5.25	2.60	1.48 ± 0.01	10.5	10.1	145 ± 0.02
	10.5	2.60	1.73 ± 0.03	15.7	10.1	1.56 ± 0.07
	21.0	2.60	2.43 ± 0.04	20.0	10.1	1.77 ± 0.03
	2.62	5.10	1.26 ± 0.04	29.6	10.1	1.82 ± 0.07
	5.25	5.10	1.34 ± 0.02	40.0	10.1	2.17 ± 0.07
	10.5	5.10	1.51 ± 0.05	10.0	30.0	1.38 ± 0.03
	15.7	5.10	1.72 ± 0.09	20.0	30.0	1.56 ± 0.06
	20.0	5.10	1.83 ± 0.08	29.6	30.0	1.71 ± 0.10
	29.6	5.10	2.31 ± 0.06	40.0	30.0	1.80 ± 0.10
	40.0	5.10	2.71 ± 0.02			

^{*a*} $I = 1.0 \text{ M} (\text{ClO}_4^{-}), \text{ [complex]} = (3.2-7.1) \times 10^{-4} \text{ M}.$

scheme for the formation/dissociation of the binuclear complexes may thus be written as

$$Fe^{3+} + N_{s}CoSalH^{2+} \frac{k_{11}}{k_{-11}} N_{s}CoSalFe^{4+} + H^{+}$$

$$\uparrow \downarrow \kappa_{h}$$

$$FeOH^{2+} + N_{s}CoSalH^{2+} \frac{k_{22}}{k_{-22}} N_{s}CoSalFe^{4+} + H_{2}CoSalFe^{4+} + H_{2}COSaFFe^{4+} + H_{2}COSAF$$

The components of k_{obsd} as defined by a relation analogous to eq 1 are therefore (since $K_h \ll [H^+]$) given by

$$k_{\rm f} = k_{11} + k_{22} K_{\rm h} / [{\rm H}^+]$$
 (5)

and

$$k_{\rm r} = k_{-11}[{\rm H}^+] + k_{-22} \tag{6}$$

The values of k_f and k_r obtained as the least-squares slopes and intercepts of the plots of k_{obsd} vs. [Fe³⁺] at specified hydrogen ion concentrations are given in Table VI. The rate parameters k_{11} and k_{22} calculated from the intercept and slope of the plot of k_f vs. $1/[H^+]$ utilizing the known values of K_h^{14} are also collected in Table VI.

The rate constant data (Table VI) show that the rates of formation of the N₅CoSalFe⁴⁺ species are virtually independent of the N₅ ligand environment. Furthermore, as is seen in Table VII, k_{11} and k_{22} for N₅CoSalH²⁺ are similar in magnitude (within a factor of about 6) to the corresponding values for several neutral ligands (H₂Sal, C₆H₅OH and a number of substituted phenols, CH₃CO₂H) and for the similarly monoprotonated complex ion $(NH_3)_5CoC_2O_4H^{2+}$. The only substantial divergences occur for the partially deprotonated salicylato ligand, HSal⁻, and the fully deprotonated oxalatopentaammine complex ion, $(NH_3)_5CoC_2O_4^+$. Both of these are much more reactive than any of the species already mentioned, showing increases of a factor of 5 or more. This

acceleration is probably to be expected, since in each of these cases deprotonation of the ligand uncovers an additional coordination site and also reduces its charge by 1 unit, thus favoring its interaction with either of the positively charged Fe(III) species. The controversy with respect to the mechanism of ligand interchange with $Fe(H_2O)_6^{3+}$ and Fe- $(H_2O)_5OH^{2+}$ has been recently discussed. The general conclusions, on evidence from both water-exchange rates¹⁵ and volume of activation determinations,²³ is that for the hexaaquo species the mechanism is I_a , but it is I_d for the monohydroxo congener, and our study of the reactions with the (oxalato)pentamminecobalt(III) complex⁷ supported these concepts. The data of Table VII clearly support the I_d mechanism for $Fe(H_2O)_5OH^{2+}$ since the water-exchange rate greatly exceeds the probable first-order rate constant k^*_{22} for water elimination in any of the ligand substitutions.²⁴ However, for the Fe- $(H_2O)_6^{3+}$ reactions, k^*_{11} cannot be concluded to exceed k_{ex} for any reasonable value²¹ of K_{os} other than for the $(NH_3)_5CoC_2O_4^+$ case,⁷ so only for the latter is the I_a mechanism assignment supportable on the water-exchange rate basis. But the exchange rate criterion also fails for $Fe(H_2O)_6^{3+}$ reactions with the simple negative ligands Cl⁻ and Br⁻, where rather small k_{11} values (4.8 and 1.6 M⁻¹ s⁻¹, respectively²⁵) are coupled with unequivocally negative ΔV^* values (-5 and -19 cm³ mol⁻¹, respectively²⁵), as expected for the I_a mechanism

Dissociation of N₅CoSalFe⁴⁺ Species. Rate data for the acid-catalyzed dissociation of N₅CoSalFe⁴⁺ are collected in Table VIII. The observed rate constants were corrected with

Swaddle, T. W., paper presented at Conference on Inorganic Reaction (23)

Mechanisms, Wayne State University, Detroit, MI, June 10–12, 1981. It is generally accepted^{15,21} that the derived second-order rate constants, (24)k in substitutions of this type are a combination of rapid outer-sphere precursor complex formation with equilibrium constant K_{∞} and a rate constant for dissociative water elimination such that $k = k^* K_{\infty}$ for small values of K

 ⁽²⁵⁾ Hasinoff, B. B. Can. J. Chem. 1976, 54, 1820; 1979, 57, 77.

Table VI. Rate Parameters for the Formation of N_5 CoSalFe⁴⁺ Species

N ₅	10 ² × [H ⁺], ^a M	$k_{f}, M^{-1} s^{-1}$	$k_{11}, \\ M^{-1} s^{-1}$	$k_{22}, M^{-1} s^{-1}$	k_{r}, s^{-1}
5 NH ₃	2.64	31.0 ± 0.8	20.0 °C 2.1 ± 0.9	624 ± 36	0.148 ± 0.009
	5.14 10.12 20.11	19.3 ± 0.5 10.0 ± 0.4 5.9 ± 0.6			$\begin{array}{c} 0.137 \pm 0.010 \\ 0.151 \pm 0.008 \\ 0.114 \pm 0.009 \\ 0.122 \pm 0.009 \end{array}$
	30.10	3.8 ± 0.6	25.0 °C		0.122 ± 0.009
	2.66 5.16 10.1	52.5 ± 0.6 32.1 ± 0.1 16.8 ± 0.2	5.6 ± 3.1	771 ± 75	$\begin{array}{l} 0.214 \pm 0.007 \\ 0.231 \pm 0.002 \\ 0.245 \pm 0.005 \end{array}$
	2.68 5.18 10.1	94.7 ± 4.5 56.2 ± 1.2 30.3 ± 0.4	30.0 °C 9.0 ± 3.8	1036 ± 66	0.30 ± 0.05 0.37 ± 0.03 0.41 ± 0.01
(en) ₂ - (NH ₃)	2.64 5.14 10.12	30.4 ± 0.4 18.0 ± 0.4 9.49 ± 0.1	20.0 °C 2.8 ± 1.4	585 ± 43	0.177 ± 0.004 0.174 ± 0.008 0.197 ± 0.002
	2.65 5.16 10.12	51.8 ± 4.8 31.2 ± 1.9 16.3 ± 0.2	25.0 °C 5.1 ± 2.8	766 ± 67	0.340 ± 0.050 0.340 ± 0.040 0.346 ± 0.004
	2.67 5.17 10.14	$\begin{array}{r} 80.2 \pm 2.4 \\ 45.3 \pm 0.5 \\ 26.5 \pm 0.6 \end{array}$	30.0 °C 7.4 ± 0.3	869 ± 6	$\begin{array}{c} 0.47 \pm 0.03 \\ 0.50 \pm 0.01 \\ 0.51 \pm 0.01 \end{array}$
tetren	2.62 5.10 10.1 20.1 30.0 40.0	$22.4 \pm 0.8 \\ 16.7 \pm 0.4 \\ 9.5 \pm 0.6 \\ 5.8 \pm 0.6 \\ 4.5 \pm 0.7 \\ 3.3 \pm 1.2$	20.0 °C 3.3 ± 1.0	428 ± 47	$\begin{array}{c} 0.418 \pm 0.009 \\ 0.439 \pm 0.010 \\ 0.450 \pm 0.012 \\ 0.467 \pm 0.012 \\ 0.460 \pm 0.013 \\ 0.475 \pm 0.016 \end{array}$
	2.65 5.16 10.1 20.0 30.0	$\begin{array}{c} 46.2 \pm 0.2 \\ 27.3 \pm 0.5 \\ 16.7 \pm 0.1 \\ 10.7 \pm 0.3 \\ 8.9 \pm 0.2 \end{array}$	25.0 °C 5.6 ± 0.4	663 ± 11	$\begin{array}{l} 0.718 \pm 0.003 \\ 0.770 \pm 0.012 \\ 0.789 \pm 0.002 \\ 0.840 \pm 0.007 \\ 0.812 \pm 0.005 \end{array}$
	2.67 5.17 10.1 30.0	$70.1 \pm 4.8 \\ 41.0 \pm 1.3 \\ 23.5 \pm 2.2 \\ 14.2 \pm 1.6$	30.0 °C 8.2 ± 0.8	741 ± 18	$\begin{array}{c} 1.07 \pm 0.05 \\ 1.12 \pm 0.03 \\ 1.22 \pm 0.05 \\ 1.26 \pm 0.04 \end{array}$

^a Average concentration of hydrogen ion¹⁴ for a given set of runs with constant [HClO₄] and varying $[Fe^{3+}]_T$.

the rate constant for the formation reaction by utilizing the values of k_{11} , k_{22} , and K_h . The corrected pseudo-first-order

Table VII. Rate and Activation Parameters for the Formation of FeL^{n+} Species^a

rate constants for the dissociation reaction (i.e., $k_r = k_{obsd}$ $k_{\rm f}$ [Fe³⁺]) compare satisfactorily with the values of $k_{\rm r}$ under comparable acidity obtained from the formation study (see Table VI). Values of k_r given in Table VIII exhibit a small acid dependence. Hence the major path of dissociation of Fe³⁺ from N₅CoSalFe⁴⁺ is the spontaneous dissociation path, i.e., k_{-22} path. The intercepts and the slopes of the linear plots of k_r vs. [H⁺] yield the rate constants for the spontaneous dissociation (k_{-22}) and the acid-catalyzed dissociation (k_{-11}) of the binuclear species, respectively. In contrast to that of the formation reaction, the rate constant for the spontaneous dissociation (k_{-22}) of the binuclear species depends upon the nature of the N₅ grouping around the cobalt(III) center and decreases in the sequence tetren > $(en)_2(NH_3) > 5 NH_3$ (see Table IX). Furthermore, a rate comparison shows that the N₅CoSalFe⁴⁺ species are 200-2000 times kinetically more stable than mono(phenolato)iron(III) species, $C_6H_4(X)OFe^{2+}$ $(10^{-2} k_{-22} (s^{-1}) = 5.0, 4.3, 4.8, 3.2, 2.9, 1.5, 2.5, and 1.7$ for X = p-MeO, m-Me, H, p-Cl, m-Cl, o-Cl, m-NO₂, and p-NO₂, respectively; 25 °C, I = 0.1 M).¹⁹ This is contrary to expectation if Fe³⁺ is bound to the salicylate moiety through the phenoxide oxygen in the unidentate fashion. On the other hand, the observed rate-influencing effect of the amine ligand and the rate sequence for $C_6H_4(X)OFe^{4+}$ and $N_5CoSalFe^{4+}$ species strongly suggest that Fe^{3+} is chelated by the salicylate moiety of the cobalt(III) substrates. The activation enthalpy and entropy for the chelate ring opening for all three N₅CoSalFe⁴⁺ species (i.e., for the \bar{k}_{-22} path) is close to 14.9 kcal mol⁻¹ and -11 cal K⁻¹ mol⁻¹ (see Table IX). The large negative value of ΔS^* is indicative of higher degree of solvation of the transition state as compared to the ground state and is in keeping with the dissociative mechanism.

The acid-catalyzed dissociation of Fe³⁺ from N₅CoSalFe⁴⁺ is observed to be first order in hydrogen ion concentration in the range $[H^+] = 0.025-0.9$ M. The values of the second-order rate constants are, however, too small to consider slow proton transfer to the bridged salicylate moiety as the rate-determining step. It is more reasonable to assume that the acidcatalyzed path involves two steps: (i) fast protonation preequilibrium of N₅CoSalFe⁴⁺, presumably at the coordinated phenoxide group, and (ii) the rate-limiting dissociation of the protonated species to $Fe(OH_2)_6^{3+}$ and $N_5CoSalH^{2+}$. Our kinetic evidence above (Table IV) shows that the mono(salicylato)iron(III) complex has an equilibrium constant of 1.64 \pm 0.06 M⁻¹ at 25 °C (I = 1.0 M). For the binuclear complexes, the protonation equilibrium constant must be at least 100 times less than that for FeSal⁺ (as k_{-11} was evaluated from eq 6 at $[H^+] = 0.025-0.9$ M). It is also reasonable to expect that the values of the protonation equilibrium constant of the binuclear species will be independent of the nature of the amine envelope around cobalt(III). The observed second-order rate constants (k_{-11}) vary in the order tetren > $(en)_2(NH_3) > 5$

	LH	k ₁₁ , M ⁻¹ s ⁻¹	$\Delta H_{11}^{\ddagger},$ kcal mol ⁻¹	$\Delta S_{11}^{+},$ cal deg ⁻¹ mol ⁻¹	$10^{-2}k_{22}, M^{-1} s^{-1}$	ΔH ₂₂ [‡] , kcal mol ^{−1}	$\Delta S_{22}^{+},$ cal deg ⁻¹ mol ⁻¹	ref
_	(NH ₃) ₅ CoSalH ²⁺	5.6	25 ± 5	$+28 \pm 16$	7.7	8.4 ± 0.9	-17 ± 3	this work
	cis-(en) ₂ (NH ₃)CoSalH ²⁺	5.1	16.6 ± 2.1	0 ± 7	7.7	6.4 ± 1.4	-24 ± 5	this work
	$(\alpha\beta S)$ -(tetren)CoSalH ²⁺	5.6	15.5 ± 1.3	-3 ± 5	6.6	9.1 ± 3.2	-15 ± 11	this work
	H, Sal	small ^b			35	6.0 ± 0.9	-22 ± 3	this work
	HŠal⁻	small ^b			185	13.3 ± 3.4	+6 ± 11	this work
	(NH_3) , CoC ₂ O ₄ ⁺	870			370	14.5 ± 0.7	$+11.0 \pm 2.4$	7
	$(NH_3)_5 CoC_2O_4H^{2+}$	small ^b			46			7
	$C_{6}H_{5}OH^{c,d}$	25			7.2			21
	CH ₃ ČO, H ^e	27	26 ± 12	35 ± 36	28	11.1 ± 2.2	-5.4 ± 7.0	22
	H₂Ô ^f	160	15.3 ± 0.6	2.9 ± 1.6	1400	10.1 ± 0.4	$+1.3 \pm 1.0$	15

^a At T = 25 °C; I = 1.0 M unless otherwise specified. ^b Not possible to measure by our procedure but probably not greater than 10 M⁻¹ s⁻¹. ^c At I = 0.1 M. ^d Values of k_{22} for various substituted phenols differ very little from those for phenol itself.¹⁹ ^e At I = 0.5 M. ^f Waterexchange rate constants (units s⁻¹).

N _s	[HClO ₄], M	k_{obsd}, s^{-1}	k_{r} , b_{s-1}	[HClO ₄], M	k_{obsd}, s^{-1}	k_{r}^{b}, s^{-1}	· · · · · ·
			20.0°C				
5 NH.	0.025	0.163 ± 0.006	0 128	0.35	0 159 + 0 004	0.155	
• • • • • • •	0.15	0.155 ± 0.008	0 147	0.55	0.155 ± 0.004 0.156 + 0.002	0.152	
	0.15	0.155 - 0.000	0.147	0.80	0.162 ± 0.002	0.152	
	$k_{-11} = 0.031$	$1 \pm 0.013 \text{ M}^{-1} \text{ s}^{-1}$		$k_{-22} = 0.13$	$6 \pm 0.006 \text{ s}^{-1}$		
	••		25.0°C				
	0.025	0.275 ± 0.002	0.216	0.40	0.265 ± 0.007	0.256	
	0.10	0.275 ± 0.002	0.210	0.40	0.203 ± 0.007	0.250	
	0.10	0.254 ± 0.007 0.251 + 0.004	0.230	0.70	0.202 ± 0.007 0.272 + 0.005	0.234	
	b = 0.045	0.231 ± 0.004	0.239	0.90 k = 0.22	0.272 ± 0.003	0.205	
	$h_{-11} = 0.043$	1 1 0.011 MI S		$\kappa_{-22} = 0.22$	7 ± 0.000 s -		
		0.404 0.000	30.0 °C				
	0.025	0.404 ± 0.008	0.297	0.50	0.402 ± 0.013	0.388	
	0.05	0.389 ± 0.010	0.331	0.90	0.402 ± 0.012	0.390	
	0.10	0.392 ± 0.009	0.358				
	$k_{-11} = 0.085$	$\pm 0.034 \text{ M}^{-1} \text{ s}^{-1}$		$k_{-22} = 0.32$	$6 \pm 0.016 \mathrm{s}^{-1}$		
			20.0 °C				
$(en)_{2}(NH_{3})$	0.025	0.214 ± 0.002	0.180	0.60	0.228 ± 0.004	0.223	
	0.)5	0.207 ± 0.005	0.196	0.80	0.237 ± 0.006	0.233	
	0.15	0.214 ± 0.005	0.206	0.90	0.256 ± 0.004	0.252	
	0 40	0.219 ± 0.003	0.214				
	$k_{11} = 0.064$	$\pm 0.008 \text{ M}^{-1} \text{ s}^{-1}$		$k_{-22} = 0.18$	$8 \pm 0.004 \mathrm{s}^{-1}$		
			25.0°C				
	0.025	0.363 ± 0.005	0.305	0.40	0.354 ± 0.010	0.345	
	0.050	0.342 ± 0.007	0.310	0.80	0.387 ± 0.006	0.380	
	0.10	0.311 ± 0.011	0.312	0.90	0.397 ± 0.005	0 390	
	0.20	0.340 ± 0.010	0.328			010 90	
	$k_{-11} = 0.09$	± 0.02		$k_{-22} = 0.30$	$1 \pm 0.011 \mathrm{s}^{-1}$		
			30.0 °C				
	0.025	0.545 ± 0.007	0.455	0.40	0.533 ± 0.013	0.520	
	0.050	0.503 ± 0.011	0 4 5 4	0.60	0.551 ± 0.006	0.520	
	0.10	0.498 ± 0.009	0.470	0.80	0.588 ± 0.003	0.540	
	0.20	0.503 ± 0.009	0.485	0.00	0.000 - 0.000	0.070	
	$k_{-11} = 0.157$	$\pm 0.006 \text{ M}^{-1} \text{ s}^{-1}$		$k_{-22} = 0.45$	$2 \pm 0.003 \text{ s}^{-1}$		
			20.0°C				
tetren	0.025	0.450 ± 0.009	0 4 24	0.35	0.533 ± 0.017	0.579	
	0.050	0.150 ± 0.009 0.453 + 0.008	0.438	0.55	0.535 ± 0.017 0.537 ± 0.015	0.520	
	0.150	0.503 ± 0.009	0.496	0.40	0.547 ± 0.013	0.532	
	0.250	0.517 ± 0.010	0.511	0.80	0.570 ± 0.0021	0.566	
	$k_{-11} = 0.168$	$\pm 0.030 \text{ M}^{-1} \text{ s}^{-1}$		$k_{\rm ex} = 0.44$	$8 \pm 0.012 \text{s}^{-1}$	0.000	
			25.0°C		• •••••		
	0.025	0.724 ± 0.010	23.0 C	0.40	0.960 + 0.010	0.960	
	0.025	0.724 ± 0.010 0.794 + 0.010	0.072	0.40	0.009 ± 0.010	0.000	
	0.300	0.841 ± 0.012	0.780	0.70	0.910 ± 0.023 0.969 ± 0.032	0.902	
	k = 0.288	$\pm 0.048 \text{ M}^{-1} \text{ s}^{-1}$	5.651	k = 0.71	6 + 0 025 s ⁻¹	0.702	
	$n_{-11} = 0.200$	= 0.0+0 m j	20.0%	$n_{-22} = 0.710$	0 = 0.023 3		
	0.025	1.07 ± 0.01	30.0 °C	0.40	1.00 . 0.00		
	0.025	1.07 ± 0.01	0.99	0.40	1.28 ± 0.03	1.27	
	0.130	1.22 ± 0.04 1.27 ± 0.07	1.20	0.60	1.31 ± 0.03	1.30	
	0.300	1.27 ± 0.07	1.23	0.90	$1.4 / \pm 0.0 /$	1.46	
	$k_{-11} = 0.44$:	E U.U9 M ⁻¹ s ⁻¹		$k_{-22} = 1.07$	$\pm 0.04 \mathrm{s}^{-1}$		

Table VIII. Rate Data for the Dissociation of N_sCoSalFe⁴⁺ Species^a

 $a [Fe^{3+}]_{T} = 1.05 \times 10^{-3}$; [complex] = 2.6 × 10⁻⁴ M (N₅ = 5 NH₃, (en)₂(NH₃)), 1.56 × 10⁻⁴ M (N₅ = tetren). $b k_{r} = k_{obsd} - (k_{11} + k_{22}K_{h}/(H^{+}))$ [Fe³⁺].

Table IX. Rate and Activation Parameters for the Spontaneous and Acid-Catalyzed Dissociation of Iron(III)-Mono(salicylato) Species^a

com	plex	$k_{-11}(25 ^{\circ}\text{C}), M^{-1} ^{s^{-1}}$	ΔH^{\dagger} , kcal mol ⁻¹	$\Delta S^{\ddagger},$ cal K ⁻¹ mol ⁻¹	$k_{-22}(25 \ ^{\circ}\text{C}),$	Δ <i>H</i> [‡] , kcal mol ^{−1}	$\Delta S^{\ddagger},$ cal K ⁻¹ mol ⁻¹
(NH ₃),CoSa	Fe ⁴⁺	0.05	17.1 ± 2.9	-7 ± 9	0.23	14.9 ± 1.3	-12 ± 4
cis-(en), (NH	,)CoSalFe⁴+	0.09	15.3 ± 2.3	-12 ± 8	0.30	14.9 ± 0.5	-11 ± 2
(αβS)-(tetren FeSal ⁺)CoSalFe ⁴⁺	0.29 8.8 ⁶	16.6 ± 0.9 11.3 ± 1.0	-5 ± 3 -17 ± 3.0	0.72	14.8 ± 0.5	-10 ± 2
FeSalH ²⁺					5.5 ± 0.2	17.5 ± 0.4	$+3.4 \pm 1.3$

^a I = 1.0 M (ClO₄⁻). ^b $k_{-11} = k_5 K_{\rm H}$; spontaneous dissociation of FeSal⁺ was not observable.

 NH_3 , suggesting that, as for the spontaneous dissociation path, the rate of dissociation of Fe^{3+} from the protonated binuclear species $N_5CoSalFe^{4+}$ increases with steric crowding at the cobalt(III) center. Alternatively, the effect may be the result of mediation of the electrostatic repulsion between the Fe(III) and Co(III) centers by the solvation shells of the bridged

binuclear species, repulsion being least for the most highly solvated (NH₃), species and greatest to the least solvated tetren analogue.

Acknowledgment. The authors are grateful to the John D. and Francis H. Larkin Foundation of the State University of New York at Buffalo for financial support and to Utkal University for a leave of absence to A.C.D.

Registry No. Co(NH₃)₅SalH²⁺, 30931-74-9; cis-Co(en)₂(NH₃)-SalH²⁺, 59296-02-5; ($\alpha\beta S$)-Co(tetren)SalH²⁺, 78715-92-1; Fe, 7439-89-6; $Fe(OH_2)_6^{3+}$, 15365-81-8; $Fe(OH_2)_5(OH)^{2+}$, 15696-19-2; H₂Sal, 69-72-7.

Contribution from the Gray Freshwater Biological Institute, College of Biological Sciences, University of Minnesota, Navarre, Minnesota 55392

Demethylation of Methylcobalamin by Tetrahaloaurates. Kinetics and Mechanism

YUEH-TAI FANCHIANG*

Received June 23, 1981

The stoichiometries and kinetics of reactions of methylcobalamin (CH_3-B_{12}) with AuX_4^- (X = Cl or Br) in acidic solution have been examined. Under anaerobic conditions, the reactions occur with a 2:1 stoichiometry (AuX_4 -:CH₁-B₁₂), producing aquocobalamin with an oxidized corrin ring, CH₃X, and metallic gold. The stoichiometry and reaction products are interpreted in terms of one-electron oxidative demethylation of CH_3 - B_{12} . Kinetic data support a mechanism which involves an equilibrium prior to the electron transfer between CH_3 - B_{12} and AuX_4^- . Effects of pH and ionic strength on the kinetics are also examined. The detailed mechanism for the Co-C bond cleavage is discussed.

Introduction

Oxidation-reduction reactions and their related cleavage of the cobalt-carbon bond are important in our understanding of the biological roles of methylcobalamin $(CH_3-B_{12})^{.1}$ They are also of considerable mechanistic interest.² Several modes of cleavage of the Co-C bond of CH₃-B₁₂ induced by metal ions have been described in detail. These include electrophilic demethylation by Hg^{2+3} and $PdCl_4^{2-,4}$, reductive demethylation by Cr^{2+5} and Sn(II),⁶ and redox switch by $PtCl_6^{2-/}$ PtCl₄2-.

It has been briefly reported that CH_3 - B_{12} can be deme-thylated by AuCl₄-.⁸ The mechanism for this reaction was suggested to be similar to that proposed for the methylation of platinum complexes by CH_3 - B_{12} .⁷ We undertook the study on the demethylation of CH_3 - B_{12} by gold complexes to determine whether this mechanism occurs. In contrast to the previous report, our work provides results which support the single-electron oxidative demethylation of CH_3 - B_{12} by gold complexes.

Experimental Section

Materials. Fine gold powder and NaAuCl₄·2H₂O were purchased from either Goldsmith or Ventron, Inc., and were used as received. KAuBr₄·2H₂O was synthesized by the method of Block.⁹ AuX₂⁻ solutions were generated by reducing AuX_4^- with zinc amalgam in acidic solution under an atmosphere of argon. CH3-B12 was synthesized by the method described by Dolphin¹⁰ or purchased from Sigma, Inc. Cob(II) alamin (B_{12r}) solutions were generated by reducing aquo $cob(III)alamin (H_2O-B_{12}^+)$ with equimolar amounts of Eu²⁺ under argon. Concentrations of CH₃-B₁₂, H₂O-B₁₂⁺, and B_{12r} in solution were determined from their published molar absorptivities.^{11,12} All other chemicals were reagent grade and were used as received.

Stoichiometric Studies and Reaction Products. Consumption ratios for the reactions between CH_3 - B_{12} and $AuCl_4$ or $AuBr_4$ were determined spectrophotometrically at 351 or 537 nm with a GCA/ McPherson spectrophotometer in subdued light under an atmosphere of argon. B₁₂ products were identified spectrophotometrically. Demethylation products under various conditions were identified with a Becker gas chromatograph Model 417 with a column (8 ft by 2 mm) of 5% FFAP on chromasorb W-AW-DMCS, 80-100 mesh at 45 °C, and with a Brüker 270 MHz proton NMR spectrometer.

Equilibrium Constant Measurements. The equilibrium constants for 5,6-dimethylbenzimidazole "base-on" and "base-off" conversion of CH_3 - B_{12} (reaction 1) were estimated spectrophotometrically ac-

cording to eq 2.¹³ Measurements were made at 1.0 M ionic strength which was maintained with NaCl, NaBr, or NaClO₄ (23 °C).

$$\frac{A_{305nm}}{[CH_3-B_{12}]_T} = \frac{K_2\epsilon_{base-on} + K_1[H^+]\epsilon_{base-off}}{K_2 + K_1[H^+]}$$
(2)

 pK_2 can be considered as 4.7, which is the pK_a for free 5,6-dimethylbenzimidazole in aqueous solution.¹⁴ According to eq 2, pK_1 in 1.0 M perchlorate, 1.0 M chloride, and 1.0 M bromide solutions were estimated to be 0.92, 1.7, and 2.1, respectively (at 23 °C).

- J. M. Poston and T. C. Stadtman, "Cobalamin, Biochemistry and Pathophysiology", B. M. Babior, Ed., Wiley, New York, 1975, p 111.
 J. K. Kochi, "Organometals and Organometalloids, Occurrence and
- Fate in the Environment", ACS Symp. Ser. No. 82, F. E. Brickman and J. M. Bellama, Eds., American Chemical Society, Washington, D.C., 1978, p 205
- (a) R. E. DeSimone, N. W. Penley, L. Charbonneau, S. G. Smith, J. M. Wood, H. A. O. Hill, J. M. Pratt, S. Ridsdale, and R. J. P. Williams, *Biochim. Biophys. Acta*, 304, 851 (1973); (b) V. C. W. Chu and D. W. Gruenwedel, Bioinorg. Chem., 7, 169 (1977).
 W. H. Scovell, J. Am. Chem. Soc., 96, 3451 (1974).
- (5) J. H. Espenson and T. D. Sellers, Jr., J. Am. Chem. Soc., 96, 94 (1974).
 (6) Y.-T. Fanchiang and J. M. Wood, J. Am. Chem. Soc., 103, 5100
- (1981)
- (a) R. T. Taylor and M. L. Hanna, *Bioinorg. Chem.*, 6, 281 (1976); (b) Y.-T. Fanchiang, W. P. Ridley, and J. M. Wood, J. Am. Chem. Soc., (7) 101, 1442 (1979).
- (8) G. Agnes, S. Bendle, H. A. O. Hill, F. R. Williams, and R. J. P. Williams, J. Chem. Soc., Chem. Commun., 850 (1971).
 (9) B. P. Block, Inorg. Synth., 4, 14 (1953).
 (10) D. Dolphin, Methods Enzymol., 18C, 34 (1971).

- W. H. Pailes and H. P. C. Hogenkamp, *Biochemistry*, 7, 4160 (1978).
 J. M. Pratt, "Inorganic Chemistry of Vitamin B₁₂", Academic Press, London, 1972, Chapter 5, p 44.
- (13) Equation 2 was derived from equilibria presented in eq 1. The molar absorptivities at 305 nm for the base-on and base-off CH₃-B₁₂ are given respectively by $e_{base-on} = 1.3 \times 10^4 \text{ M}^{-1} \text{ cm}^{-1}$ and $e_{base-off} = 2.2 \times 10^4 \text{ M}^{-1} \text{ cm}^{-1}$. It is assumed that protonated base-off CH₃-B₁₂ has the same
- cm⁻¹. It is assumed that protonated base-off CH₃-B₁₂.
 (14) D. D. Perrin in "Dissociation Constants in Organic Bases in Aqueous Solution", International Union of Pure and Applied Chemistry (1972). The assumption that pK₂ is the same as that of free 5,6-dimethylbenzimidazole is justified on the basis that pK_a of 1-β-D-ribo-5,6-dimethylbenzimidazole has been estimated to be 4.68 (M. T. Davies, P. Marchie V. Batson, and P. Sturzenov, P. Barameto, 2, 420 Mamalis, V. Petrow, and B. Sturgeon, J. Pharm. Pharmacol, 3, 420 (1951)).

^{*} Correspondence should be addressed at the Department of Biochemistry, Medical School, University of Minnesota, Minneapolis, MN 55455.